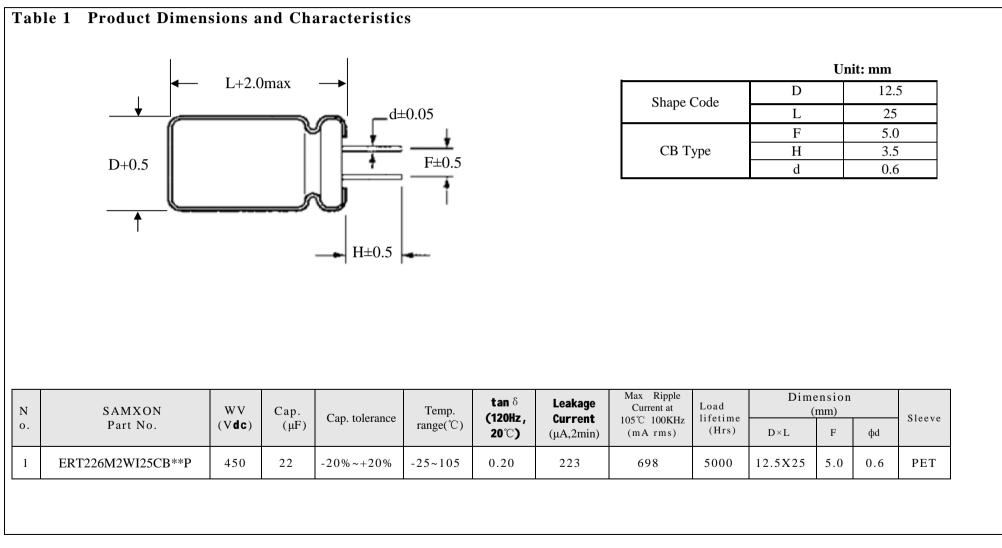


SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):志盛翔 DATE: (日期):2018-07-24


CATEGORY (品名)	:	ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	:	RT 450V22μF(φ12.5X25)
VERSION (版本)	:	01
Customer P/N	:	
SUPPLIER	:	

SUPPL	IER	CUST	OMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
孟庆庆	付婷婷		

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

SPECIFICATION RT SERIES					ALTERN	STORY	
Rev.	Date	RT SER Mark	IES Page	Contents	Purpose	RECORDS Drafter	Approver
KUV.	Date	IVIAIK	rage	Contents	ruipose	Dialiei	Appiove
	Version)1			Page 1	

MAN YUE ELECTRONICS	ELECTROLYTIC CAPACITOR	SAMXON
COMPANY LIMITED	SPECIFICATION	
	RT SERIES	

Version 01 Page 2

 A.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	er System 4 on 5 stics 5~10 & Surge voltage Tolerance) nt ength characteristic st ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled	Part Number System 4 Construction 5 Characteristics 5~10 1 Rated voltage & Surge voltage 5~10 2 Capacitance (Tolerance) 5 3 Leakage current 4 4 tan δ 5 5 Terminal strength 6 6 Temperature characteristic 7 7 Load life test 8 8 Shelf life test 9 9 Surge test 10 10 Vibration 11 11 Solderability test 12 12 Resistance to solder heat 13 13 Change of temperature 14 14 Damp heat test 15 15 Vent test 16 16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"	C O N T E N T S	Sheet
 S. Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current Leakage current tan δ Terminal strength Terminal strength Temperature characteristic Load life test Shelf life test Shelf life test Surge test I Vibration Solderability test Change of temperature And Damp heat test Vent test Maximum permissible (ripple current) 	on 5 stics 5~10 & Surge voltage Tolerance) nt egth characteristic st ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	Construction 5 Characteristics 5~10 1 Rated voltage & Surge voltage 2 2 Capacitance (Tolerance) 3 3 Leakage current 4 4 tan δ 5 5 Terminal strength 6 6 Temperature characteristic 7 7 Load life test 8 .8 Shelf life test 9 .9 Surge test 10 .10 Vibration 11 .11 Solderability test 12 .12 Resistance to solder heat 13 .13 Change of temperature 14 .14 Damp heat test 15 .15 Vent test 16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 11	Application	4
 A. Characteristics 5 A.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	stics 5~10 & Surge voltage Tolerance) nt ugth characteristic st ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	Characteristics5~101Rated voltage & Surge voltage2Capacitance (Tolerance)3Leakage current4tan δ 5Terminal strength6Temperature characteristic7Load life test.8Shelf life test.9Surge test.10Vibration.11Solderability test.12Resistance to solder heat.13Change of temperature.14Damp heat test.15Vent test.16Maximum permissible (ripple current)List of "Environment-related Substances to be Controlled ('Controlled Substances')"	Part Number System	4
5 1.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current)	5~10 & Surge voltage Tolerance) nt hgth characteristic st ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	5~10 1 Rated voltage & Surge voltage 2 Capacitance (Tolerance) 3 Leakage current 4 tan δ 5 Terminal strength 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test 10 Vibration 11 Solderability test 12 Resistance to solder heat 13 Change of temperature 14 Damp heat test 15 Vent test 16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"	Construction	5
 A.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	& Surge voltage Tolerance) nt agth characteristic st ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current tan δ Terminal strength Temperature characteristic Load life test Shelf life test Shelf life test Surge test Vibration Solderability test Resistance to solder heat Change of temperature Damp heat test Vent test Kenvironment-related Substances to be Controlled ('Controlled Substances')" 	Characteristics	5~10
 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	nt hgth characteristic st ty test to solder heat temperature test missible (ripple current) irronment-related Substances to be Controlled ('Controlled 11	 3 Leakage current 4 tan δ 5 Terminal strength 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test 10 Vibration 11 Solderability test 12 Resistance to solder heat 13 Change of temperature 14 Damp heat test 15 Vent test 16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	Rated voltage & Surge voltage	
 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	ngth characteristic st ty test to solder heat temperature test missible (ripple current) irronment-related Substances to be Controlled ('Controlled 11	 4 tan δ 5 Terminal strength 6 Temperature characteristic 7 Load life test .8 Shelf life test .9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	2 Capacitance (Tolerance)	
 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	characteristic st ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 5 Terminal strength 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	3 Leakage current	
 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	characteristic st ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	4 $\tan \delta$	
 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	st ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 7 Load life test .8 Shelf life test .9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 	5 Terminal strength	
 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 .8 Shelf life test .9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 	6 Temperature characteristic	
 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	ty test to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 .9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 	7 Load life test	
 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 	.8 Shelf life test	
 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	.9 Surge test	
 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	to solder heat temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	 .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	10 Vibration	
 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 	temperature test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	.13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')"	11 Solderability test	
4.14 Damp heat test4.15 Vent test4.16 Maximum permissible (ripple current)	test missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	.14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"	12 Resistance to solder heat	
4.15 Vent test 4.16 Maximum permissible (ripple current)	missible (ripple current) ironment-related Substances to be Controlled ('Controlled 11	.15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"		
4.16 Maximum permissible (ripple current)	ironment-related Substances to be Controlled ('Controlled 11	16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')"		
	ironment-related Substances to be Controlled ('Controlled 11	List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')"		
	pplication Guidelines 12~15		List of "Environment-related Substances to be Controlled ('Controlled	11
				12~15

	Version	01		Page	3	
--	---------	----	--	------	---	--

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

SAMXON

1. Application

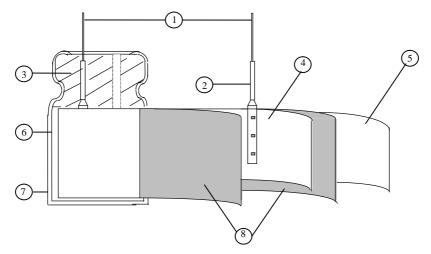
This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс Ρ EGS 1 5 D11 S 0 м 1 н TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Voltage (W.V.) Code Code Case Size Feature Code SAMXON Product Li ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D (4) Co 3 B 5 1 4 C 5 D 3 E RR For internal use only Radial bulk 0.1 104 ± 5 J 2.5 0E (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к E,M or 0,1,2,3,4,5,9) ±10 0K 8 0.33 334 2.0mm Pitch тτ 10 1A ±15 L JV4AK7L8MN 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EG м 1D ±20 20 105 3.5mm Pitch тν Sleeve Material Co FG 1 46 46.5 18 18.5 20 22 7 EGE 25 1E PET Р 11 5.0mm Pitch тс 30 2.2 225 Ν ±30 32 13 ERS ERF ERL ERR Lead Cut & Form 35 3.3 335 1V -40 w 22 25 30 34 35 40 42 45 40 1G OP WQ R 46S T U 8X Z СВ-Туре СВ 4.7 475 42 1M -20 0 А FR 50 1H ERE ERD ERH EBD СЕ-Туре CE 10 106 57 1L -20 +10 С 63 1J HE-Type HE 22 226 71 **1**S 51 3.5 76 80 ER. 75 1**T** 6 ERE ERC EFA ENP -20 +40 × KD-Type ĸD 336 33 80 1K 85 1R 90 100 -20 +50 FD-Type FD s Z Costing Ex 454 05 7 77 11 11 11 12 12 12 12 12 12 12 12 12 13 13 13 13.5 1C 20 20.5 7 30.7 75 47 476 90 19 ENH ERV ERV ELP EAP EOP 100 2A -10 0 ЕН-Туре EΗ в 107 100 120 20 125 2B PCB Termial -10 +20 220 227 v 150 2Z 160 2C sw 330 337 -10 +30 Q 180 2P 200 2D Snap-in SX EKP EEP 470 477 -10 +50 215 22 т EFP ESP 220 2N 1C 20 25 2J 30 3A 35 3E sz 2200 228 -5 +10 230 23 Е EVP EGP EWR EWU EWT EWS EWF EWS EWH EWL EWB 250 2E Lug SG 22000 229 -5 +15 275 2Т F 05 300 21 33000 339 310 2R -5 +20 3 G 06 315 2F 50 80 1L 1K 1M 1P 47000 479 330 2U 0 +20 R Т5 2V 350 100000 10T Screw 360 2X 0 +30 0 т6 VNS 375 2Q 150000 15T 40 50 55 10 1R 1E 1S 1F 1T 1U 0 +50 385 2Y I. D5 400 2G 220000 22T +5 +15 2M z 420 D6 VZS 450 2W 330000 ззт +5 D 500 2H 1000000 550 25 10M +10 +50 26 Y 600 2J 1500000 15M 630 +10+30 н 2200000 22M 3300000 33M 5

Version

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01	Page	5
v crsion	01	I age	5

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

Tabl		
	ITEM	PERFORMANCE
	Rated voltage (WV)	
4.1		WV (V.DC) 160 200 220 250 350 400 420 450
	Surge voltage (SV)	SV (V.DC) 200 250 270 300 400 450 470 500
4.2	Nominal capacitance (Tolerance)	$<$ Condition>Measuring Frequency: 120Hz±12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm2^{\circ}C$ $<$ Criteria>Shall be within the specified capacitance tolerance.
4.3	Leakage current	<condition></condition> Connecting the capacitor with a protective resistor $(1k \Omega \pm 10 \Omega)$ in series for 2 minutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1
4.4	tan δ	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature. <criteria> Refer to Table 1</criteria></condition>
4.5	Terminal strength	<condition> Tensile Strength of Terminals Fixed the capacitor, applied force to the terminal in lead out direction for 10 ± 100 seconds. Bending Strength of Terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) fo 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds.Diameter of lead wireTensile force N (kgf)Bending force N (kgf)0.5mm and less5 (0.51)2.5 (0.25)Over 0.5mm to 0.8mm10 (1.0)5 (0.51)<criteria> No noticeable changes shall be found, no breakage or looseness at the terminal.</criteria></condition>

Version	01		Page	6	
---------	----	--	------	---	--

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

		<condition></condition>	ſ		I			
		STEP	Testing Tempe	erature(°C)		Time		
		1	20±2	2	Time to re	each thermal	equilibriu	m
		2	-40(-25)	± 3	Time to re	each thermal	equilibriu	m
		3	20 ± 2	2	Time to re	each thermal	equilibriu	m
		4	105±	2	Time to re	each thermal	equilibriu	m
		5	20±2	2	Time to re	each thermal	equilibriu	m
		<criteria></criteria>						
			be within the lim		4The leakag	ge current me	easured sl	nall not
	Temperature		nes of its specifie					
	characteristi		an δ shall be with	hin the limit	t of Item 4.4	The leakage	e current s	shall not
4.6	cs		specified value.	(_)	- 11		- £ 41 £- 1°	
		c. At-40 C (-2 table.	$(5^{\circ}C)$, impedance	e (Z) ratio sh	all not exce	ed the value	of the fol	lowing
		Working Voltag	ge (V) 160	200	250	350	400	450
		Z-25°C/Z+20)°C 3	3	3	5	5	6
		For capacitance	e value > 1000 μ	F, Add 0.5	per another	1000 µ F for	Z-25/Z+2	20℃,
				Add 1.0 p	per another	1000 µ F for	Z-40°C/Z	Z+20℃.
		Capacitance, tai	$n \delta$, and impedar	nce shall be	measured at	t 120Hz.		
		<condition></condition>						
			EC60384-4No.4.	13 methods,	, The capaci	tor is stored a	at a tempe	erature of
		According to II $105^{\circ}C \pm 2$ with	n DC bias voltage	e plus the rat	ted ripple cu	rrent for Tal	ble 1 . (Tł	ne sum of
		According to II 105°C ±2 with DC and ripple	n DC bias voltage peak voltage sł	e plus the rat hall not exc	ted ripple cu seed the rate	rrent for Tal	ble 1 . (Th voltage) '	te sum of Then the
		According to II 105°C ±2 with DC and ripple product should	DC bias voltage peak voltage sh be tested after 16	e plus the rat hall not exc 6 hours reco	ted ripple cu seed the rate	rrent for Tal	ble 1 . (Th voltage) '	e sum of Then the
	Load	According to II 105°C ± 2 with DC and ripple product should result should m	n DC bias voltage peak voltage sł	e plus the rat hall not exc 6 hours reco	ted ripple cu seed the rate	rrent for Tal	ble 1 . (Th voltage) '	e sum of Then the
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria></criteria>	n DC bias voltage peak voltage sh be tested after 16 neet the following	e plus the rat hall not exc 6 hours reco g table:	ted ripple cu seed the rate vering time	errent for Tal ed working at atmospher	ble 1 . (Th voltage) '	e sum of Then the
4.7		According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet th	e plus the rat hall not exc 6 hours reco g table: e following	ted ripple cu weed the rate vering time requiremen	urrent for Tal ed working at atmospher ts.	ble 1 . (Th voltage) '	e sum of Then the
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m Criteria> The characteri Leakage	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4.	ted ripple cu teed the rate vering time requiremen 3 shall be s	urrent for Tal ed working at atmospher ts. atisfied	ble 1 . (Th voltage) '	e sum of Then the
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage Capacita	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet th	e plus the rat hall not exc 6 hours reco g table: e following Value in 4 Within ± 2	requirement 3 shall be s	arrent for Tal ed working at atmospher ts. atisfied al value.	ble 1 . (Th voltage) ' ric condit	e sum of Then the
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m Criteria> The characteri Leakage Capacita $\tan \delta$	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4 Within ± 2 Not more t	requiremen 3 shall be s 20% of initi han 200% of	trrent for Tal ed working at atmospher ts. atisfied al value. of the specific	ble 1 . (Th voltage) ' ric condit	e sum of Then the
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage Capacita	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4 Within ± 2 Not more t	requiremen 3 shall be s 20% of initi han 200% of	arrent for Tal ed working at atmospher ts. atisfied al value.	ble 1 . (Th voltage) ' ric condit	e sum of Then the
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage Capacita tan δ Appeara	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4 Within ± 2 Not more t	requiremen 3 shall be s 20% of initi han 200% of	trrent for Tal ed working at atmospher ts. atisfied al value. of the specific	ble 1 . (Th voltage) ' ric condit	e sum of Then the
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should m <criteria></criteria> The characteri Leakage Capacita tan δ Appeara	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4. Within ± 2 Not more t There shall	requiremen 3 shall be s 20% of initi han 200% of be no leaks	trent for Tal ed working at atmospher ts. atisfied al value. of the specific age of electro	ble 1 . (Th voltage) ' ric condit: ed value. olyte.	e sum of Then the ions. The
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage Capacita $\tan \delta$ Appeara <condition></condition> The capacitors a	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change	e plus the rathall not exc 6 hours reco g table: e following Value in 4 Within ± 2 Not more t There shall	requiremen 3 shall be s 20% of initi han 200% of be no leaka	trent for Tal ed working at atmospher ts. atisfied al value. of the specific age of electro	ble 1 . (Th voltage) ' ric condit: ed value. olyte. re of 105 :	the sum of Then the ions. The $\pm 2^{\circ} C$ for
4.7	life test	According to II $105^{\circ}C \pm 2$ with DC and ripple product should m <criteria></criteria> The characteri Leakage Capacita tan δ Appeara <condition></condition> The capacitors a 1000+48/0 how chamber and b	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change unce are then stored wi urs. Following thi e allowed to stal	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4. Within ± 2 Not more t There shall ith no voltag is period the bilized at ro	requiremen 3 shall be s 20% of initi han 200% c 1 be no leaks e applied at capacitors oom tempera	trent for Tal ed working at atmospher ts. atisfied al value. of the specific age of electro t a temperatur shall be rem ature for 4~8	ble 1 . (The voltage) ' ric condition of the voltage of the volta	the sum of Then the ions. The $\pm 2^{\circ}C$ for in the test Next they
	life test Shelf	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage Capacita tan δ Appeara <condition></condition> The capacitors a 1000+48/0 how chamber and b shall be conne	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change unce are then stored wi urs. Following thi e allowed to stal cted to a series	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4. Within ± 2 Not more t There shall ith no voltag is period the bilized at ro limiting res	requirement 3 shall be s 20% of initian 1 be no leaks 20% of initian 1 be no leaks 1 be no leaks 1 be no leaks 1 be in 1 be	trent for Tal ed working at atmospher ts. atisfied al value. of the specific age of electro t a temperatur shall be rem ature for $4 \sim 8$ 00Ω) with I	ble 1 . (The voltage) ' ric condit ed value. blyte. re of 105: oved from 3 hours. N D.C. rated	the sum of Then the ions. The $\pm 2^{\circ}C$ for in the test Vext they i voltage
4.7	life test Shelf life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should res	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change unce ure then stored wi urs. Following thi re allowed to stal cted to a series nin. After which	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4. Within ± 2 Not more t There shall ith no voltag is period the bilized at ro limiting res	requirement 3 shall be s 20% of initian 1 be no leaks 20% of initian 1 be no leaks 1 be no leaks 1 be no leaks 1 be in 1 be	trent for Tal ed working at atmospher ts. atisfied al value. of the specific age of electro t a temperatur shall be rem ature for $4 \sim 8$ 00Ω) with I	ble 1 . (The voltage) ' ric condit ed value. blyte. re of 105: oved from 3 hours. N D.C. rated	the sum of Then the ions. The $\pm 2^{\circ}C$ for in the test Vext they i voltage
	life test Shelf	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage Capacita tan δ Appeara <condition></condition> The capacitors a 1000+48/0 how chamber and b shall be conne	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change unce ure then stored wi urs. Following thi re allowed to stal cted to a series nin. After which	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4. Within ± 2 Not more t There shall ith no voltag is period the bilized at ro limiting res	requirement 3 shall be s 20% of initian 1 be no leaks 20% of the formula of th	trent for Tal ed working at atmospher ts. atisfied al value. of the specific age of electro t a temperatur shall be rem ature for $4 \sim 8$ 00Ω) with I	ble 1 . (The voltage) ' ric condit ed value. blyte. re of 105: oved from 3 hours. N D.C. rated	the sum of Then the ions. The $\pm 2^{\circ}C$ for n the test Vext they 1 voltage
	life test Shelf life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should res	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change unce ure then stored wi urs. Following thi re allowed to stal cted to a series nin. After which	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4. Within ± 2 Not more t There shall ith no voltag is period the bilized at ro limiting res	requirement 3 shall be s 20% of initian 1 be no leaks 20% of the formula of th	trent for Tal ed working at atmospher ts. atisfied al value. of the specific age of electro t a temperatur shall be rem ature for $4 \sim 8$ 00Ω) with I	ble 1 . (The voltage) ' ric condit ed value. blyte. re of 105: oved from 3 hours. N D.C. rated	the sum of Then the ions. The $\pm 2^{\circ}C$ for in the test Vext they i voltage
	life test Shelf life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should res	n DC bias voltage peak voltage sh be tested after 16 neet the following stic shall meet the current ance Change unce ure then stored wi urs. Following thi re allowed to stal cted to a series nin. After which	e plus the rat hall not exc 6 hours reco g table: <u>e following</u> Value in 4. Within ± 2 Not more t There shall ith no voltag is period the bilized at ro limiting res	requirement 3 shall be s 20% of initian 1 be no leaks 20% of the formula of th	trent for Tal ed working at atmospher ts. atisfied al value. of the specific age of electro t a temperatur shall be rem ature for $4 \sim 8$ 00Ω) with I	ble 1 . (The voltage) ' ric condit ed value. blyte. re of 105: oved from 3 hours. N D.C. rated	the sum of Then the ions. The $\pm 2^{\circ}C$ for in the test Vext they i voltage

Version 01 Fage 7	Version	01			7
-------------------	---------	----	--	--	---

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

	<criteria></criteria>	
	The characteristic shall me	eet the following requirements.
C116	Leakage current	Value in 4.3 shall be satisfied
4.8 Shelf	Capacitance Change	Within $\pm 20\%$ of initial value.
	tan δ	Not more than 200% of the specified value.
test	Appearance	There shall be no leakage of electrolyte.
		tored more than 1 year, the leakage current may
		through about 1 k Ω resistor, if necessary.
4.9 Surge test	The capacitor shall be submittedfollowed discharge of 5 min 30The test temperature shall be C_R :Nominal Capacitance (μ <criteria></criteria> Leakage currentCapacitance Changetan δ AppearanceAttention:	15~35℃.
4.10 Vibration test	perpendicular directions. Vibration frequency range Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter grading in place with a bracket. 4mm or less Image: Criteria After the test, the followin Inner construction	: 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute eater than 12.5mm or longer than 25mm must be fixed Within 30° To be soldered

Version	01	Page	8
		U	

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

	1				
		<condition></condition>			
		The capacitor shall be test		conditions:	
		Soldering temperature	: 245±3°C		
	Solderability	Dipping depth	: 2mm	,	
4.11	test	Dipping speed	: 25±2.5mm	ı/s	
	test	Dipping time	: 3±0.5s		
		<criteria></criteria>			1 .
		Coating quality	immersed	n of 95% of the surface	being
			minersed		
		<condition></condition>			
		Terminals of the capac	itor shall be immersed i	into solder bath at	
		260 ± 5 °C for 10 ± 1 sec	onds or $400 \pm 10^{\circ}$ C for 3	$^{+1}_{-0}$ seconds to 1.5~2.0n	nm from the
		body of capacitor.		Ū	
	Resistance to	• •	ll be left under the norm	al temperature and norn	nal humidity
4.12	solder heat	for 1~2 hours before n		I	
	test	<criteria></criteria>			
		Leakage current	Not more than the	specified value.	7
		Capacitance Change	Within $\pm 10\%$ of	initial value.	
		tan δ	Not more than the		
		Appearance	There shall be no	leakage of electrolyte.	
		<condition></condition>			
		Temperature Cycle:Accor	ding to IEC60384-4No	4.7 methods, capacitor	shall be
		placed in an oven, the cor			
			emperature	Time	
		(1)+20°℃	1	≤3 Minutes	
	~	(2)Rated low tempera	ature (-40°C) (-25°C)	30 ± 2 Minutes	
4.12	Change of	(3)Rated high temper		30 ± 2 Minutes	
4.13	temperature test	(1) to (3)=1 cycle, tot		50±2 Minutes	
	iest	< <u>Criteria></u>			
		The characteristic shall m	eet the following requir	ement	
		Leakage current	Not more than the		1
		$\tan \delta$	Not more than the s	*	
		Appearance		eakage of electrolyte.	
				unage of electrolyte.	J
		<condition></condition>			
		Humidity Test:	ANo 1 10 methoda	agitor shall	
		According to IEC60384 be exposed for 500 ± 8	-		
		$40\pm2^{\circ}$ °C, the characteri			nt
		40 ± 2 °, the characteri	sue change shan meet t	ne tonowing requireme	
	Damp heat	< Cristania >			
4.14	test	< <u>Criteria></u>	Not more then the	aified value	
		Leakage current	Not more than the spe		
		Capacitance Change	Within $\pm 20\%$ of init		
		tan δ	Not more than 120% of	-	
		Appearance	There shall be no leak	age of electrolyte.	

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

4.15	Vent test	<condition> The following test only apple with vent. D.C. test The capacitor is connected current selected from below <table 3=""> Diameter (mm) DC 22.4 or less Over 22.4</table></condition>	with its p v table is <u>Current (</u> <u>1</u> <u>10</u> no dange	polarity reve applied.	ersed to a I	DC power sou	rce. Then a
4.16	Maximum permissible (ripple current)	<condition>The maximum permissible at 120Hz and can be appl Table-1The combined value of D rated voltage and shall notFrequency Multipliers:$\boxed{Coefficient}$$\boxed{Hz}$$Cap. (\mu F)$$1 \sim 5.6$$6.8 \sim 180$$220 \sim$</condition>	ied at ma .C voltag	ximum oper e and the pe	rating temp	erature	exceed the

Version	01	Page	10

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
ficavy metals	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
	Polybrominated biphenyls (PBB)			
Brominated	Polybrominated diphenylethers(PBDE) (including			
organic	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	oounds(TBT)			
Triphenyltin con	npounds(TPT)			
Asbestos				
Specific azo com	npounds			
Formaldehyde				
Beryllium oxide				
Beryllium copp	er			
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)			
Perfluorooctane	sulfonates (PFOS)			
Specific Benzotr	iazole			

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 $\phi 6.3 \text{-} \phi 16 \text{mm:} 2 \text{mm minimum, } \phi 18 \text{-} \phi 35 \text{mm:} 3 \text{mm minimum, } \phi 40 \text{mm or greater:} 5 \text{mm minimum.}$

- (5) Clearance for Seal Mounted Pressure Relief Vents
 - A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01	P	Page	12
------------	---	------	----

SAMXON

(6) Wiring Near the Pressure Relief Vent
Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas
exceeding 100° C may be released which could dissolve the wire insulation and ignite.
(7) Circuit Board patterns Under the Capacitor
Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
(8) Screw Terminal Capacitor Mounting
Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.
Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
6
1.6 Electrical Isolation of the Capacitor
Completely isolate the capacitor as follows.
(1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
(1) Between the earloade and the ease (except for axially readed b types) and between the anode terminal and other circuit paths(2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
(2) Between the extra mounting terminals (on 1 types) and the anode terminal, earloue terminal, and other encurt paths.
1.7. The Product and urange should take the sample as the standard
1.7 The Product endurance should take the sample as the standard.
1.9. If conduct the load or shelf life test, must be collect, date and a within 6 months, products of complian
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9 Capacitor Sleeve
The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate th
capacitor.
The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION!
Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and oper
circuits which could occur during use.
(1) Provide protection circuits and protection devices to allow safe failure modes.
(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
2.Capacitor Handling Techniques
2.1 Considerations Before Using
(1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
(2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
with a resistor with a value of about $1k\Omega$.
(3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying
rated voltage in series with a resistor of approximately $1k\Omega$.
(4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
 (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life car
result.
result.
2.2 Capacitor Insertion
(1) Verify the correct capacitance and rated voltage of the capacitor.
(1) Verify the correct polarity of the capacitor before inserting.
(3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
(4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the
capacitor.
For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
2.3 Manual Soldering
(1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 $^{\circ}$ C for 3 seconds or less.
(2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.

(3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.

(4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

(1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.

(2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.

(3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60° C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15
---------	----	--	------	----